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respective formylneospirinedienone products was based on 
the following assignment of the proton signals in the NMR 
spectrum (TFA) of 8a:2°-22 5 8.66 and 8.24 (s, s, 1 H, 
CHO), 7.28 and 7.22 (s, s, 1 H, C-12 H), 7.07 and 6.88 (s, 
s, 1 H, C-I H), 6.84 and 6.82 (s, s, 1 H, C-9 H), 6.34 (s, 1 
H, C-4 H), 3.99, 3.94, and 3.78 (all s, 9 H, C-Il 'OCH3, 
C-IO OCH3, C-3 OCH3). The NMR spectrum of 8d (the 
oxidation product of 5d) lacked the signals attributable to 
the C-I proton, and the spectrum of 8e (the oxidation prod­
uct of 5e) lacked the signal attributable to the C-4 proton. 

Evidence for the postulated facile acid-catalyzed rear­
rangement of the acylmorphinandienone 7a to the acylneo-
spirinedienone 8a was adduced from a study of the chemis­
try of the /V-formylmorphinandienone 3a. Electrobxidative 
coupling of 5a in HBF4

4 yielded 3a (8%; mp 139-140°; uv 
Xmax

MeOH (log e) 238 (4.23), 283 (3.89) nm; ir Xmax
CHCb 

5.93 (sh), 5.98, 6.07, 6.17 n; NMR (CDCl3) 8 8.14 and 
7.98 (s, s, 1 H, CHO), 6.80 (s, 1 H, ArH), 6.55 (s, 1 H, ole-
finic H), 6.32 and 6.30 (s, s, 1 H, C-8 H), 6.28 (s, 1 H, ole-
finic H), 3.84, 3.78, and 3.73 (all s, 9 H, 3-OCH3); mass 
spectrum m/e 355 (M+)) along with 8a (2.5%).23 The 
structure of 3a was proven by reduction with LiAlH4 in 
THF to the oily iV-methyldienol and oxidation of the dienol 
with MnO2 to O-methylflavinantine (3b, 29%).24 When 3a 
was treated with anhydrous methanolic HCl, rearrange­
ment accompanied ketalization, and the dimethyl ketal7 of 
8a was obtained (44%). Treatment of 3a with HBF4 at 
room temperature for 30 min gave 8f (R1 = R3 = R4 = H) 
(74%), and methylation of 8f with diazomethane gave 8a 
(31%). 

Morphinandienones have been postulated to be precur­
sors to dibenzazonine alkaloids such as protostephanine, via 
a pathway involving a neospirine intermediate.25 Further­
more, biomimetic syntheses26,27 and the conversion of a la­
beled morphinandienone precursor to protostephanine in 
Stephania japonica26 have been reported. The demon­
strated sequence 5a —• 7a —• 8a and our facile conversion of 
neospirinedienones to dibenzazonine derivatives7'9 parallel 
the sequence of skeletal rearrangements proposed for diben­
zazonine alkaloid biosynthesis in Stephania japonica. 
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Facile Biomimetic Syntheses of Dibenzazonine and 
Aporphine Alkaloids1'2 

Sir: 

Morphinandienones have recently been recognized as the 
primary products of chemical3-4 as well as anodic5,6 cou­
pling of nonphenol benzylisoquinoline precursors. The ease 
of acid-catalyzed rearrangement of these spirodienones4 led 
us to explore their potential as in vitro alkaloid precursors. 
We report herein several facile and efficient syntheses of di­
benzazonine and aporphine alkaloids via morphinandienone 
intermediates. In addition, the possible implications of these 
reactions for alkaloid biosynthesis are discussed. 

Electrooxidative coupling of (i)-laudanosine (5a)5 in 
HBF4

6 yielded (±)-C-methylflavinantine (1) in 94% yield. 
Treatment of 1 with boron trifluoride-etherate at room 
temperature for 26 hr, followed by hydrogenation over Pt in 
methanol gave erybidine (3),7 in 85% yield (Scheme I). By 
analogy with the demonstrated favored rearrangement of 
morphinandienones to neospirinedienones under the influ­
ence of strongly acidic catalysts,4 the conversion of 1 to 3 is 
presumed to proceed via the intermediacy of 2 and 4. The 
high-yield synthesis of 3 represents the most efficient re-
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Scheme I 
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ported route to dibenzazonine alkaloids, and, as noted ear­
lier,4 parallels the sequence of skeletal rearrangements pro­
posed for the biosynthesis of dibenzazonine alkaloids in 
Stephania japonica. 

Chemical intramolecular coupling of (±)-./V-formylnor-
laudanosine (5b) with VOF3-TFA gave, as a minor product 
(6%), (i)-iV-formylnorglaucine (7b), and similar treatment 
of (i)-laudanosine (5a) gave (i)-glaucine (7a) in 43% 
yield.3 Furthermore, (i)-glaucine (7a) was also obtained, 
in 17% yield, by electrooxidative coupling of 5a in TFA.8 In 
view of aforementioned observations concerning the forma­
tion of morphinandienones as the primary products of oxi­
dative coupling of nonphenol benzylisoquinolines, we were 
led to speculate that the formation of aporphines may 
proceed via the route 5 -»• 6 -»• 8 -» 7 (Scheme II). To eval­
uate the possible role of morphinandienones as aporphine 
precursors, (±)-0-methylflavinantine ( l ) was heated on the 
steam bath with concentrated hydrochloric acid for 90 min, 

Scheme II 
R2O. 

R3O' 

CH3O 

5a, R '=R 2 =R 3 =R 4 = CH3 

b, R1 = CHO; R2 = R3= R4= CH3 

C Ri = R2=R4=H; R3=CH3 

d, Ri = R2=CH3; R3 = R4= H 

CH3O. 

CH3O 

CH3O 

whereupon a precipitate separated. The product (89% yield) 
was (±)-l,2-dihydroxy-9,10-dimethoxyaporphine (10) as 
its hydrochloride salt:9 mp 197-198° (MeOH); uv 
AmaxEtOH (log e) 281 (4.19), 302 (4.18) nm; N M R (TFA) 5 
8.02 (s, 1 H, H - I l ) , 6.94 (s, 1 H, H-8), 6.70 (s, 1 H, H-3), 
3.90, 3.88 (each s, 6 H, 2-OCH3), 2.59 (d, 3 H, N-CH 3) ; 
mass spectrum m/e (%) 327 (95, M + ) , 326 (100), 312 (32), 
310 (22), 296 (15), 284 (27), 269 (10), 253 (20); positive 
Quastel test for a catechol.10 Treatment of 10 with an ex­
cess of diazomethane gave (±)-glaucine (7a), isolated as 
the hydrobromide, mp 220-221° (7996).11 The facile and 
high-yield conversion from 5a to 1 and thence to 7a consti­
tutes the most efficient reported route to 1,2,9,10-tetrasubs-
tituted aporphines, and supports the proposed intermediacy 
of morphinandienones in the chemical and anodic oxidation 
of (i)-laudanosine (5a) to (i)-glaucine (7a). Furthermore, 
it is likely that the conversion of 1 to 10 proceeds via the in­
termediacy of proerythrinadienone 9. It is noteworthy that 
spirodienones similar to 9 have been proposed as biosyn-
thetic intermediates to explain the incorporation of norpro-
tosinomenine (5c) into aporphine alkaloids in Dicentra exi-

mia. 
12 

CH3O CH3O 

To evaluate the potential of the new aporphine synthesis 
for the preparation of 1,2,10,11-tetrasubstituted aporph­
ines, (±)-Ar-ethoxycarbonylnorsalutaridine ( H a ) was pre­
pared by the procedure of Schwartz and Mami.13 Methyl-
ation of 11a with CH3I-K^CO3 in acetone gave ( ± ) - 0 -
methyl-./V-ethoxycarbonylnorsalutaridine ( l i b , 89%): mp 
161.5-162.5° (EtOH-Et2O); uv Xm a x

E t O H (log 1) 238 
(4.48), 280 (3.87) nm; ir Xmax

CHC '3 5.93, 5.98, 6.09, 6.20 ».; 
N M R (CDCl3) 8 7.27 (s, 1 H, H-5), 6.84 (s, 2 H, H-I and 
H-2), 6.35 (s, 1 H, H-8), 3.97, 3.87, 3.79 (each s, 9 H, 3-
OCH3); mass spectrum m/e (%) 399 (100, M + ) , 371 (22), 
326 (20). Reduction of l i b with LiAlH4 in T H F under re­
flux gave a mixture of the epimeric (±)-0-methylsalutarid-
inols (80%) which was oxidized with MnO2 in CHCl3 to 
yield (i)-O-methylsalutaridine ( l i e , 60%): mp 70-73° 
(Et2O); uv Xmax

EtOH (log e) 239 (4.47), 280 (3.86) nm; ir 
XmaxCHC'3 5.99, 6.09, 6.20 n; NMR 1 4 (CDCl3) S 7.28 (s, 1 
H, H-5), 6.84 (s, 2 H, H-I and H-2), 6.33 (s, 1 H, H-8), 
3.93, 3.86, 3.80 (each s, 9 H, 3-OCH3), 2.45 (s, 3 H, N-
CH3) ; mass spectrum m/e (%) 341 (100, M + ) , 326 (39), 
313 (25), 298 (31). Treatment of l i e with concentrated hy­
drochloric acid on the steam bath for 3 hr followed by 
methylation with an excess of diazomethane yielded (±) -
corydine (12a, 31%; mp 165-166.5° (lit. 148°,15 165-
167016); mixture TLC, uv, NMR,1 5 and mass spectrum17 

identical with those of naturally occurring (+)-corydine18). 
Also isolated were (±)-<9-methylcorydine (12b) as the hy­
drochloride (11%, mp 234-235° dec, characterized as the 
methiodide of 12b, mp 248-250° dec, lit.19 248° dec) and 
starting material ( l i e , 11%). The low conversion yield and 
long required reaction period may be attributable to the ste-
ric crowding in 1,2,10,11-tetrasubstituted aporphines. 
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CH3CL 
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11a, R1 = H; R2 = COOEt 
b, R1 = CH3; R2 = COOEt 
c, R 1 = R 2 = CH3 

12a, R = H 
b, R = CH3 

The acid-catalyzed rearrangements of morphinandi­
enones thus follow two principal routes, one which leads to 
dibenzazonine derivatives (e.g., 1 -» 2 —*• 4), and a second 
which leads to aporphines (e.g., 1 -» 9 - * 10). The rear­
rangement to aporphines appears to be favored in reactions 
involving substrates and conditions which may enhance the 
participation of the nitrogen free electron pair, possibly 
through the intermediacy of a species such as 13.20 Exami-

OCH, 

13 

nation of the molecular model of 13 indicates that stereo-
electronic factors favor migration of the aryl group, to yield 
a proerythrinadienone intermediate. In contrast, those acid-
catalyzed rearrangements of morphinandienones whch in­
volve minimal nitrogen participation (e.g., with boron tri-
fluoride salts or amide derivatives) result in migration of 
the alkyl group, to yield neospirine derivatives. 

Biosynthetic studies have demonstrated that (±)-reticu-
line (5d) is a precursor of the aporphine alkaloids (+)-bul-
bocapnine,21 (+)-isoboldine,22 and (+)-magnoflorine,23 and 
these results have been interpreted as indicative of a "di­
rect-coupling" mechanism. The in vivo conversion of (±) -
reticuline (5d) to morphinandienones has also been demon­
strated.24 In view of the newly discovered facile in vitro con­
version of morphinandienones to aporphines, biosynthetic 
experiments are underway to explore the possibility that 
morphinandienones may as well be in vivo precursors of 
aporphine alkaloids. 
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New Metalloorganic Compounds of Tungsten(III) 

Sir: 

The high stability and number of chromium(III) com­
plexes have no counterpart in the chemistry of molybdenum 
and tungsten.1 For example1 the only pure halo compounds 
of tungsten(III) are W 2Xg 3 - salts where X = Cl and Br. 
We wish now (i) to report a simple synthesis of tungsten-
(III) dialkylamides and our characterization of these com­
pounds and (ii) to indicate how these compounds afford 
synthetic routes to an extensive chemistry of tungsten(III) 
which was hitherto unknown. 

Previously we reported2 that the reaction of LiNMe2 

with a variety of tungsten halides led to either pure 
W(NMe 2 ) 6 or mixtures of W(NMe 2 ) 6 and W2(NMe2)6 . 
However, we were unable to isolate pure W2(NMe2)6 from 
these W(III)-W(VI) mixtures by classical techniques. An 
examination of the mixed W(III)-W(VI) dimethylamides 
by X-ray diffraction techniques showed that the two di­
methylamides cocrystallized. The unit cell contained two 
dimers, W2(NMe2)6, and one monomer, W ( N M e 2 V This 
study was significant in providing the first structurally 
characterized molecule with an unbridged triple bond be­
tween two tungsten atoms. However, W(III)-W(VI) di-
methylamide samples were not amenable for the develop­
ment of the chemistry of tungsten(III). Since W(NMe2)6 is 
an extremely sterically congested molecule, we thought that 
synthetic procedures which had formerly yielded the high­
est W 2(NMe 2) 6 to W(NMe2)6 ratio would further favor the 
formation of W2(NR2)6 at the expense of W(NR2)6 if other 
lithium dialkylamides LiNR2 were employed (these are in­
herently more bulky than "NMe 2 ) . We have now found 
that this is indeed the case. The reaction of decomposed 
WCl4(OEt2)2

3 with LiNMeEt or LiNEt2 (4 equiv) in 
THF-hexane leads to the isolation of the appropriate 
W(III) dialkylamides upon sublimation, 120-150°, 10"4 

cm Hg, as pale-yellow crystalline solids. These compounds 
are oxygen and moisture sensitive, diamagnetic, and show 
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